

EASILY DEPLOYABLE CLUSTERING SYSTEMS

Adrian Neaţu, Dan Tuşaliu, Marius Dumitraşcu

University of Craiova, Faculty of Automation, Computers and Electronics,
Computer and Communications Engineering Department,

Abstract: a cluster is a type of parallel or distributed processing system, which consists of
a collection of interconnected stand-alone computers cooperatively working together as a
single integrated computing machine, sharing threads, processes and jobs. Computers
(nodes) in clusters are interconnected by a network, the network is – besides the nodes –
the most important part of cluster; thus the network is the limit of the cluster, the higher
the bandwidth the higher the performance of the cluster will be.

Keywords: cluster, Linux, inexpensive components, openMosix.

1. INTRODUCTION

This paper is the result of the research work (both
theoretical and experimental) in cluster computing
domain carried out by the authors. This project
focuses on the performance, reliability and
characteristics of clusters.

1.1 About clusters

According to the definition given by an online
dictionary:
cluster; bunch, clump, cluster, clustering – (a
grouping of a number of similar things).
When designing a cluster as a collection of
computers in a network area for parallel or
distributed systems, in general there are a few goals
to achieve:
- Scalable performance – easy growth, the ability to
expand your cluster with new machines
continuously;
- Enhanced availability – automatic recovery from
failures, when a node fails the cluster automatically
reruns the failed job;
- Complete transparency – single entry point.
Basically there are 3 types of clusters:

- Fail-Over Clusters, FO, consist of 2 ore more
network connected computers with a separate
heartbeat connection between the 2 hosts. The
heartbeat connection between the 2 machines is being
used to monitor whether all the services are still in
use: as soon as a service on one machine breaks
down the other machines try to take over.
- Load-Balancing Clusters, LB, where the concept is
that when a request for say a web-server comes in,
the cluster checks which machine is the least busy
(most available) and then sends the request to that
machine. Actually most of the times a Load-
balancing cluster is also a Fail-over cluster but with
the extra load balancing functionality and often with
more nodes.
- High Performance Computing Clusters, HPC, in
which case the machines are being configured
specially to give data centres that require extreme
performance what they need. Beowufl systems have
been developed especially to give research facilities
the computing speed they need. These kind of
clusters also have some load-balancing features; they
try to spread different processes to more machines in
order to gain performance. But what it mainly comes
down is being parallelized and that routines can be
ran separately will spread on different machines
instead of having to wait till they get done one after
another.

The most deployed types of clusters are probably the
Fail-Over Clusters and the Load-Balancing Clusters,
but for a high performance, High Performance
Computing Clusters are the most recommended.
Most common known examples of LB and FO
clusters are web farms, databases and firewalls.
People want to have 99, 99% uptime for their
services, the internet is always up and running.
The most used technique to build up a cluster is SSI
(Single System Image). SSI is the illusion created by
the software and hardware that represents a collection
of computing resources as one, more while resources.
SSI makes the cluster appear like a single machine to
the user, to applications and to the network.
Depending on the job you have to carry out, different
kinds of clusters are applicable:
- High Throughput Clusters, HT – primary used for
serial applications;
- High Performance Computing Clusters, HPC –
used in the computational science
SSI makes the use of system resources transparent
and will offer improved system response time and
performance. It simplifies the management because
the system administrator does not have to know the
underlying system architecture in order to use the
machines effectively.
There are different ways of doing parallel processing:
- (Non) Uniform Memory Access, (N) UMA,
machines for example have shared access to the
memory where they can execute their code. In the
Linux kernel there is a NUMA implementation that
varies the memory access times for different regions
of memory. It then is the kernel’s task to use the
memory that is the closest to the CPU it is used.
- Distributed Shared Memory, DSM, has been
implemented in both software and hardware, the
concept is to provide an abstraction layer for
physically distributed memory.
- PVM and MPI, tools that are most commonly being
used when people talk about GNU/Linux based
Beowulfs. Parallel Virtual Machine is quite often
being used as a tool to create Beowulf. PVM lives in
user space so no special kernel modifications are
required, each user with enough rights can run PVM.
Message Passing Interface is the open standard
specification for message passing libraries. MPICH
is one of the most used implementation of MPI based
on the free reference implementation of the libraries.

1.2 About openMosix

openMosix is a Linux kernel extension for single-
system image clustering (SSI). This kernel extension
turns a network of ordinary computers into a
supercomputer for Linux applications. Once one
installed openMosix, the nodes in the cluster will
start talking to each other by exchanging messages.
The cluster adapts itself to the workload.
openMosix adds cluster functionality to any Linux
distribution. openMosix uses adaptive load balancing
techniques, processes that run on a node can

transparently be distributed to other nodes. Due to the
complete transparency of openMosix, a process
‘thinks’ that it is running locally. openMosix turns
multiple Linux hosts into one large Symmetric Multi
Processor (SMP). Real SMP systems with two more
physical processors can exchange large amounts of
data, in practice this means that SMP system are
much faster. With openMosix the speed at which the
nodes can exchange data is limited to the speed of the
Local Area Network (LAN) connection. Using a high
bandwidth connection will increase the effectiveness
of openMosix cluster.
Another advantage of openMosix is the ability to
build a cluster out of inexpensive hardware giving
you a traditional supercomputer.
openMosix can also be used with performance
enhancing techniques like Hyper Threading available
on Intel and AMD last generation processors. Using
this technique enables one to increase the
performance of a node. The node can now handle
multiple cooperating threads that cannot be separated
and distributed among openMosix nodes.

2. HARDWARE BEING USED

All experimental work has been carried out in one of
the laboratories within the Faculty of Automation,
Computers and Electronics.
Unfortunately, because of some circumstances, there
was not possible to use a modern laboratory, with 20
or 30 nodes and high-performance network
equipment; all available equipment is quite old, but
this could actually prove as an advantage, all this
paper intends is to prove that such experiments can
be conducted, and later it will be continued with
programme development.
For the conducted experiments, the computers only
needed an optical drive and enough RAM memory.
In the tests carried out, the following low
performance equipments were used:
- One Intel Pentium III, 500MHz, 512MB RAM,
named mlc11;
- One dual-processor Intel Pentium II, 350MHz,
256MB RAM, named mlc12;
- One dual-processor Intel Pentium II, 350MHz,
512MB RAM, named mlc13;
- 10/100 network cards for each station
The computers were coupled each other using one 8
Port Fast Ethernet Switch offering 10/100Mbit
Ethernet switched network to each unit.
ClusterKnoppix is a Linux operating system which
runs completely from CDROM, using computer’s
RAM instead of HDD.

Fig. 1. Cluster structure.

When booting up, Knoppix automatically detects all
hardware and starts up a graphical user interface
(KDE). ClusterKnoppix already has an openMosix
modified kernel built in. The package comes with
several openMosix utilities to smoothly build up a
cluster.

3. EXPERIMENTS

3.1. Methodology

The method of building the cluster and
experimenting with it is straightforward. There is no
need of a central point – a server – for the cluster. In
this case, there exists a DHCP server which runs on

one of the departments web servers. The first node is
powered on. By default, it searches for an available
IP address. The program is run and the execution
time is recorded. Next, the second node is powered
on and receives an IP address. In the same time, it
searches for any other available node running the
same type of software (SO + openMosix). The two
nodes then “become” aware of one another, starting
communication and thus forming the cluster. The
experiment is then rerun, recording the new result as
well. The same procedure applies foe all newly added
nodes.
Before trying to experiment anything, there was the
need of knowing which kind of applications would
run on the cluster and would give a good idea of the
cluster’s performance. As all information provided

by the openMosix project community implies, there
is no possibility to run threaded applications on the

cluster given the 2.4 kernel, thus simplifying the
search for programs to be run on the desired cluster.

Fig. 2. Initial state of cluster (initial LOAD) – when comprising 3 nodes

3.2. Generation of security keys

First step in our analysis was to run a program that
would generate 8000 RSA Key Pairs with 1024 bits

key length each. The program creates 4 child
processes by means of the fork function; the entire
program can be distributed to other stations, if any
exist.

Fig. 3. First test (cluster containing 3 nodes)

Each of the processes will generate 2000 keys (first
process will generate keys from index 0000-1999,

the second one will generate from 2000-3999 and so
on).

Fig. 4. Second test

3.3. Compiling experiment

The second and more important experiment that was
conducted was compiling of a program. The idea was
to prove that such a cluster would be suited for fast
compiling of software in general.

The software program chosen for this experiment is a
video player, MPlayer.
For the compiling process to be split into more
processes, the “make” was run with the “–j” option,
followed by the number of processes one needs to
create.

4. TEST RESULTS

4.1. Generation of security keys

The results are as expected.
First the program was compiled and run on the mlc11
machine (which has only one processor). The
program took 38 minutes to complete generation of
the 8000 keys.
Secondly, the mlc12 machine was powered on and
added into the cluster. It is a dual processor
computer; the result was immediate. The time needed
for generating the keys decreased almost by a factor
of 2, to only 20 minutes.
The next step consisted in adding the third machine,
mlc13, which is also a dual processor one. At this
time, the cluster consisted of 5 processors and 1309
megabytes of main memory.

Total time of execution was of about 15 minutes.

This is the result as shown in the linux console:

root@ttyp0[rsa]# date; ./DistKeyGen; date;
Wed Jun 8 13:42:57 EDT 2005
CHILD: I'm finished here! 2350
CHILD: I'm finished here! 2347
CHILD: I'm finished here! 2952
CHILD: I'm finished here! 3633
PARENT: About to quit!
Wed Jun 8 13:57:44 EDT 2005
root@ttyp0[rsa]#

Given below is a screenshot presenting the traffic
generated by the communication among the nodes of
the cluster.

Fig. 5. Network traffic.

4.2. Compiling experiment

Firstly, the software was compiled on the mlc11
machine (the one with only one processor). The
“make” step took around 35 minutes to complete.
Then, the mlc12 (a dual processor one) machine
was added to the cluster. The compiling time
decreased to 17 minutes. The observation is that the
two computers are not equivalent as performance,
so the result will be relative.
Finally, the third machine was added to the cluster,
mlc13, which is also a dual processor one. At this
time, the cluster consisted of 5 processors and 1309
megabytes of main memory.

Total time of execution was of about 10 minutes.
The results were expected. The more computing
power, the smaller the time it takes to compile.
During the compiling of the program, for two
nodes, the value of the network traffic monitored
for the network interface of one of the two nodes
was of about 50kbits/sec, with peaks reaching even
1000kbits/sec. The values increased for three
nodes, to an average of 300kbits/sec

Compile time

37

17

10

0
5

10
15
20
25
30
35
40

0 1 2 3 4

Fig. 6. Compile time graphic

Obviously, the higher the number of nodes, the
higher the traffic is. At one point, the necessary
bound width would no longer be satisfied, so there
is a limit in what concerns the number of nodes. In
other words, if the cluster is formed of too many
nodes, there would not be an increase in
performance, if there wasn’t available a high
performance network to sustain the inner node
communication.
In this case, given a network of 100 megabits/sec,
the optimal number of computers is smaller than 10
(around 6 or 7). If there is the need for a larger
cluster, other types of network equipment should be
considered – the first step being the implementation
of a gigabit LAN.

5. CONCLUSIONS

Given a cluster, in general, its advantages are
obvious. There are a large number of possible
applications that could benefit from the existence of
an implemented cluster system.
The solution chosen to rapidly deploy a cluster has
its advantages, and there can be mentioned

the simplicity and the type of hardware needed (no
special type of processor is needed). A major
disadvantage, for the moment, is that the
applications making use of threads instead of
processes cannot be distributed over the cluster.
The work carried out so far - the experiments
conducted – is intended to be continued by the
authors in the near future. The domain of
distributed systems and moreover the development
of distributed applications to benefit from their
existence will become more and more interesting.
Solutions are available for easy implementations –
if there is considered a laboratory comprising a
computer network that is not used during the night
time, this could be used until the morning for such
computations –

REFERENCES

[1] openMosix, http://www.openmosix.org
[2] Cluster Knoppix, http://bofh.be/clusterknoppix/
[3] Ying-Hung Chen,

http://ying.yingternet.com/mosix/
[4] MPlayer, http://www.mplayerhq.hu

